
NTU SC2006 Notes
NTU SC2006 Software Engineering Notes

SC2006 Docs Team

© SC2006 Docs Team

Table of contents

41. Software Engineering

42. Software Development Activities

53. Requirements

53.1 Requirements Elicitation

53.2 Requirements Elicitation Process

53.3 Software Requirements Specification (SRS)

63.4 Unified Modelling Language (UML)

63.5 Use Case Model

83.6 Requirements Analysis

93.7 Class Diagram

103.8 Class Stereotype Diagram

103.9 Sequence Diagram

123.10 Communication Diagram

123.11 State Machine Diagram

153.12 Activity Diagram

164. Software Processes

164.1 Software Processes

184.2 Software Process Models

204.3 Agile

214.4 Extreme Programming (XP)

254.5 Project Management

254.6 Scrum

275. Software Testing

275.1 Software Bug

275.2 Software Testing

295.3 Control Flow Testing

315.4 Total No. of Paths

325.5 Basis Path Testing

335.6 Cyclometric Complexity (CC)

345.7 Equivalence Class Testing

345.8 Boundary Value Testing

356. System Design

356.1 Software Architecture

366.2 Software Architecture Diagram

366.3 Software Architecture Style

376.4 Layered Architecture

Table of contents

- 2/46 - © SC2006 Docs Team

396.5 Object Design

396.6 Design Patterns

396.7 Strategy Pattern

406.8 Observer Pattern

426.9 Factory Pattern

436.10 Facade Pattern

446.11 Model View Controller (MVC)

467. Software Maintenance

467.1 Software Maintenance Problems

467.2 Software Mantainance Activities

468. Software Refactoring

468.1 Code Smells

Table of contents

- 3/46 - © SC2006 Docs Team

1. Software Engineering
Software Engineering is the:

The production of maintainable, fault-free software that meets the user’s requirements and is delivered on

time and within budget.

not just coding.

2. Software Development Activities

Software Engineering Activities & their deliverables:

Requirements specify how the system should function

Requirements Ellicitation: Software Requirements Specification (SRS)

Requirements Analysis: Prototype System Design

Design System Design & review:

Software Design Document

Interface Design Document

Test Cases

Data Models

Implementation

Source Code

Software

Documentation: eg. User Manual

Testing checking that the software conforms to requirements

Test Report eg. User Acceptance test

Maintenance evolving software to changing customer needs.

Feature requests

Bug Fixes

1.

◦

◦

2.

◦

◦

◦

◦

3.

◦

◦

◦

4.

◦

5.

◦

◦

1. Software Engineering

- 4/46 - © SC2006 Docs Team

3. Requirements
3.1 Requirements Elicitation

Correct requirements ellication is a the foundation of a successful Software Engineering project as it identifies the

purpose of the software system.

3.2 Requirements Elicitation Process

Identify Stakeholders

Customers

Management

Developers

Elicit Requirements

from problem domain

from customer day to day activities.

Validate Requirements with stakeholders.

Customers: check that the requirements are what they want.

Development team: check that they understand what the requirements entail.

3.3 Software Requirements Specification (SRS)

Software Requirements Specification (SRS) typically contains:

Product Description

Purpose of the System: Mission Statement

Scope of the System

Users and Stakeholders

Assumptions and Constraints

Functional Requirements:

Use Case Model

Class Diagram

Sequence Diagram

Communication Diagram

Activity Diagram

Non-Functional Requirements

Availability

Security

Maintainability

Portability

Interface Requirements

User: UI Prototype

Hardware: hardware ports

Software: API compatibility

Data Dictionary

1.

◦

◦

◦

2.

◦

◦

3.

◦

◦

1.

◦

◦

◦

◦

2.

◦

◦

◦

◦

◦

3.

◦

◦

◦

◦

4.

◦

◦

◦

5.

3. Requirements

- 5/46 - © SC2006 Docs Team

3.3.1 Project Mission Statement

Project Mission Statement defines the project in 2-3 sentences:

Problem scope of the project.

Stakeholders Developers, Customers, Management.

Outcomes benefits of the project.

3.3.2 Types of Requirements

Functional what features must the system have? eg. must be interoperate with another system.

Non-functional what properties must the system have? eg. Usability, Reliablility, Performance, Extensibility,

Maintainability

3.3.3 Good Requirements

Good Requirements are:

Atomic specify only 1 requirement per requirement statement.

Verifiable clear testable goalpost to satisfy requirement.

Unambiguious interpretation of the requirement is not up to debate.

use words Shall , Must , Must Not , Is required to , Are applicable , Responsible for , Will .

Tracable requirements can be cited by their requirement IDs back to the documents from which they where

defined.

Example:

REQ-002: The system shall require users to enter a valid email address during account registration.

3.3.4 UI Prototype

UI Prototype mock up to work out User Experience (UX) of the User Interface (UI)

3.3.5 Data Dictionary

Data Dictionary is a problem domain glossary that unambiguiously define terms so that they are not open for

interpretation.

3.4 Unified Modelling Language (UML)

Set of Diagrams for designing Software, not a programming language.

Class Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Communication Diagram

3.5 Use Case Model

Use Case Model combines:

Use Case Diagram

Use Case Description

•

•

•

•

•

•

•

•

◦

•

•

•

•

•

•

•

•

3.3.1 Project Mission Statement

- 6/46 - © SC2006 Docs Team

3.5.1 Use Case

Use Case:

describes how a user uses a system to accomplish a particular goal.

summary of ≥1 functional requirements utilised together by an actor.

3.5.2 Use Case Diagram

Use Case Diagram Associations

<<include>> large use case includes functionality from smaller use case (arrow side).

<<extends>> use case optionally extends functionality of another use case (arrow side).

3.5.3 Use Case Description

Use Case Description contains:

Participating Actors

1 initiating actor triggers the use case.

Entry Conditions start state before the use case begins as a set of conditions.

Exit Conditions end state after the use case ends as a set of conditions.

Flow of Events steps performed in the successful/happy path:

Actor steps "The Actor ..."

System steps "The System ..."

Alternative Flows steps performed on deviations from the successful path.

ID format: AF-[0-9]+ variations from successful path.

ID format: EX-[0-9]+ exceptions (errors) from successful path.

•

•

Restaurant

Eat Food

Pay for Food
Drink

Customer

Food Critic

Food Critic is a specialized
actor inheriting all use cases
of Customer. «include»

«extends»

•

•

•

◦

•

•

•

◦

◦

•

◦

◦

3.5.1 Use Case

- 7/46 - © SC2006 Docs Team

3.6 Requirements Analysis

Designing the software system based on requirements gathered in analysis:

3.6.1 Conceptual Model

Model the structure of the system via UML Class Diagram:

Objects aka Classes

Attributes aka Properties of objects.

Operations aka Methods that can be performed on Objects.

3.6.2 Dynamic Model

Model the implementation of the system via UML Diagrams:

Single Use Case

Sequence Diagram: focused on timing & order of interactions between objects.

Communication Diagram: Interactions between objects. Focused on objects.

Multiple Use Cases

State Machine Diagram: visualise single system as a set of States.

Activity Diagram: visualise interactions ≥ 1 system(s) as a set of workflow steps.

•

•

•

•

◦

◦

•

◦

◦

3.6 Requirements Analysis

- 8/46 - © SC2006 Docs Team

3.7 Class Diagram

Abstract Class class name is in italics.

Multiplicity eg. many (*) Mechanic s to 1 (1) Garage .

Inheritance subclass SportsCar inherits from class Car .

Implements implementation Car implements Drivable interface.

Aggregation Car is part of Garage , but can exist independently.

Composition Engine is part of Car , but cannot exist independently.

Dependency Mechanic uses Engine temporarily, but does not have an Engine attribute / property.

3.7.1 Access Modifiers

Access Modifier controls access to Attributes & Operations:

Access ModifierSymbolDescription

Public + Members are accessible from anywhere.

Private - Members are accessible only within the class.

Protected # Members are accessible within the class and its subclasses.

AbstractVehicle

fuel : int

startEngine() : void

«interface»
Drivable

drive() : void

Car

numberOfDoors : int
brand : String
engineCapacity : double

drive() : void

SportsCar

turboBoost() : void

Garage

cars : Car[]

addCar(c : Car) : void
removeCar(c : Car) : void

Engine

Engine(type : String)
start() : void

Mechanic

name : String
experience : int

repair(car : Car) : void

has

contains maintains

1

*

repairs

•

•

•

•

•

•

•

3.7 Class Diagram

- 9/46 - © SC2006 Docs Team

3.8 Class Stereotype Diagram

Class Diagram with no details (methods or attributes) visualising only:

Interactions between classes via <<usage>> dependency.

Class Stereotype of each class:

Boundary interface between actor and system.

Control app logic classes.

Entity data model classes.

3.9 Sequence Diagram

Visualises timing and order of interactions between objects:

1 Use Case = 1 Sequence Diagram

FingerprintReader

«boundary» EntryGate

«boundary»

FacilityAccessSystem

«control»

Employee

«entity»

«verifies»

«unlock»

«queries»

•

•

◦

◦

◦

•

3.8 Class Stereotype Diagram

- 10/46 - © SC2006 Docs Team

Visualises timing and order of interactions between objects:

1 Use Case = 1 Sequence Diagram

Vertical Bar on the object's lifeline indicates when the object is active.

Synchronous blocking message is solid arrow ->

Asynchronous non-blocking message is thin arrow ->

Return non-blocking message is thin dotted arrow <-

sd Login Sequence

User

User

LoginBoundary

LoginBoundary

LoginController

LoginController

UserEntity

UserEntity

LogService

LogService

1.1: Enter login details

1.2: Validate credentials

1.2.1: Check user exists (async)

1.2.2: User found

1.3: Validation success

opt [Verify Additional Factors 1.4:]

1.4.1: Verify 2FA

1.4.2: 2FA Verified

alt [Credentials Valid]

1.5.1: Login successful

[Credentials Invalid]

1.5.2: Show error message

par [User Logs In and Logs are Recorded]

2.1.1: Update last login timestamp

2.1.2: Record login event

loop [Retry on Failure]

3.1.1: Re-enter credentials

3.1.2: Re-validate

3.1.3: Check credentials (async)

•

•

•

•

•

3.9 Sequence Diagram

- 11/46 - © SC2006 Docs Team

Frames used in Sequence Diagram:

sd frame wrapping entire sequence diagram

ref reference another sequence diagram.

loop repeating interactions.

alt Alternative branch: if-else.

opt Optional branch: if.

par interactions run in parallel.

3.10 Communication Diagram

Messages are performed in the order of sequence no.:

* Iteration indicates that the message may be performed repeatedly.

[CONDITION] Guard only executes message if CONDITION is true.

3.11 State Machine Diagram

State Machine Diagram aka Dialog Map Models system States and transition Events between states.

•

•

•

•

•

•

User
Fingerprint Reader

Authenticator Employees

Door Lock

1*: Press fingerprint
2. Scan fingerprint

3: Validate biometrics

4: Query Employee data

5[Successful authentication]: Unlock door

•

•

3.10 Communication Diagram

- 12/46 - © SC2006 Docs Team

OrderProcessing

NewOrder

entry/Log "New order received"
do/Validate order details
exit/Notify customer

PaymentPending
entry/Set payment state to pending
do/Wait for payment confirmation

AwaitingPayment

do/Check for payment gateway response

PaymentConfirmed PaymentFailed

exit/Retry or cancel order

PaymentSuccess()/Mark order as paid PaymentFailure()[retriesLeft > 0]/Notify customer

Shipped

entry/Update shipping details
do/Track shipment
exit/Notify delivery team

Delivered

entry/Update order to "delivered"

PaymentInitiated()[paymentValid]/ProcessPayment

ShippingTriggered()[paymentConfirmed]/ScheduleShipping

DeliveryConfirmed()/Close order

3.11 State Machine Diagram

- 13/46 - © SC2006 Docs Team

Start black filled circle is the starting state.

End outer line circle with inner black filled circle is end state.

Nesting States can be nested. eg. AwaitingPayment is nested in PaymentPending .

3.11.1 State

Actions performed in the State Lifecycle are specified in the body of the state:

entry/ACTION perform ACTION once after entering the state.

do/ACTION perform ACTION repeatedly while the state is active.

exit/ACTION perform ACTION once before exiting is active.

3.11.2 Event

Event transitions format:

EVENT the name of the event that caused the state transition

ARGS arguments passed to the event handler. Can be empty.

CONDITION Optional. Only performs the transition if CONDITION is true.

ACTION Optional. Side effect action performed when transitioning.

•

•

•

State1

entry/ACTION
do/ACTION
exit/ACTION

•

•

•

EVENT(ARGS,....)[CONDITION]/ACTION

•

•

•

•

3.11.1 State

- 14/46 - © SC2006 Docs Team

3.12 Activity Diagram

Start black filled circle is the starting step.

End outer line circle with inner black filled circle is end step.

Decision Diamond shape indicates a conditional decision.

Parallel Solid liine indicates parallel execution.

Receive Order

Order Valid?
yes no

Process Payment

Send Confirmation Email

Prepare Order for Shipping

Generate Shipping Label

Payment Success?
yes no

Ship Order Notify Payment Failure

Notify Customer of Invalid Order

Track Shipment

Delivered?
yes no

Send Delivery Confirmation Email Retry Delivery or Escalate

•

•

•

•

3.12 Activity Diagram

- 15/46 - © SC2006 Docs Team

4. Software Processes
4.1 Software Processes

Software Development LifeCycle (SDLC) Activities performed in Software Engineering common to all software

processes:

Specification Requirements Ellicitation, Requirements Analysis

Design & Implementation System design & implementation

Validation Testing

Evaluation Maintenance

4.1.1 Plan Drive vs Agile vs Incremental

Software Processes can be compared by their characteristics:

Plan Driven

Agile: Iterative. Build software in a cycle of repeating steps.

Incremental: build software in small steps

Agile ≠ Incremental eg. Development in rigid stages with small step increments within each stage is

incremental but not agile.

1.

2.

3.

4.

•

•

•

4. Software Processes

- 16/46 - © SC2006 Docs Team

Plan Driven

Plan Driven aka Waterfall never returns to previous SDLC Activity.

Agile

Agile performs SDLC Activities repeatedly in iterative sprint cycles

4.1.1 Plan Drive vs Agile vs Incremental

- 17/46 - © SC2006 Docs Team

4.2 Software Process Models

Model Plan DrivenAgile Incremental

Waterfall Yes No No

Incremental (Masterplan) Yes No Yes

Incremental (Agile) No Yes Yes

Integration and ConfigurationYes No Yes

4.2.1 Waterfall

Waterfall performs SDLC Activities in a series of rigid stages:

Pros

Progress clearily identifiable project progress.

Documentation up to date documentation.

Large Systems: suitable for building large systems with multiple components.

Cons

No Return once a stage is completed.

4.2.2 Incremental

Incremental interweaves SDLC activities:

Pros

Flexible to changing requirements.

Rapid Delivery of incremental versions.

Custom Feedback can be obtained for each incremental version.

Cons

Unclear Progress No clearly defined project end.

Poor System Design Resulting from accommodating changing requirements over time.

Initial system design might not be optimal for new requirements.

Refactoring required to correct system design issues.

4.2.3 Integration & Configuration

Integration of externally sourced reusable components by configuring them to work together as a single

software system:

Pros

Lower Development Cost since we can reuse instead of paying developers to write our own.

Faster Delivery since we don't have to spend time to write our own.

Cons

Gaps in Requirements components may not satisfy all requirements.

Lack of Control over reused components project direction.

Limited Support for reused components.

Reuse Oriented-Software Development

Integration & Configuration Software Process that prioritises the reuse of off-the-shelf components where

possible:

•

◦

◦

◦

•

◦

•

◦

◦

◦

•

◦

◦

▪

▪

•

◦

◦

•

◦

◦

◦

4.2 Software Process Models

- 18/46 - © SC2006 Docs Team

4.2.3 Integration & Configuration

- 19/46 - © SC2006 Docs Team

4.3 Agile

Incremental Iterative Software Process for rapid software development:

Rapid software has to quickly adapt rapidly changing requirements via frequent new version releases.

Code over Docs Focus on writing code over creating extensive documentation.

Reduces overhead of keeping documentation in sync with changing requirements

Usage

Good for small-medium projects, experienced developers.

Bad for large projects, inexperienced developers.

4.3.1 Agile Manifesto

Preferred Less Important

Individuals & Interests Processes & tools

Working Software Comphensive Documentation

Customer Collaboration Customer Negotiation

Responding to Change Following a Plan

4.3.2 Agile Principles

Customer Involvement throughout the development process to confirm requirements & give feedback.

Incremental Delivery of software via releasing incremental versions.

People Not Process development team should be allowed to follow their own workflow rather than a strict

process.

Embrance Change system design should be extensive since we expect changing requirements.

Maintain Simplicity reduce complexity where possible.

•

•

◦

•

◦

◦

•

•

•

•

•

4.3 Agile

- 20/46 - © SC2006 Docs Team

4.4 Extreme Programming (XP)

4.4 Extreme Programming (XP)

- 21/46 - © SC2006 Docs Team

4.4 Extreme Programming (XP)

- 22/46 - © SC2006 Docs Team

Agile development method:

Continuous Integration New software build & tested several times per day.

Rapid Release 1 version released per 2 weeks.

4.4.1 User Stories

Format As a ROLE, I want to perform ACTION, So that I gain BENEFIT.

Software Requirements as User Stories:

Epics users stories are broken down from Epics (large feature).

Card size limit constraints the scope of each User Story.

Conversation include background information necessary to understand the User Story.

Confirmation include both functional & non-functional Acceptance Criteria

Acceptance Criteria

Defines when the User Story is "done":

Intent not Solution criteria should define "what" that needs to be, not the "how".

Implementation Independent Developers should decide how to implement.

High Level Includes only detail necessary to define requirements.

Release Planning

The Customer chooses which User Story to add to the next release.

User Story Tasks

User Stories are further decomposed by development team into implementation tasks:

Story Point no. that gives a workload estimate for each task.

4.4.2 Refactoring

Making code improvements to "tidy" up the code even when not required:

Maintainability code changes are easy to make due to estensible structure.

Understandablty makes the code understandable, reducing need for documentation.

eg. Reorganise classes, tidying up methods, extracting common code into functions etc

4.4.3 Test Driven Development (TDD)

TDD: write tests before code:

Clarifies Requirements writing Tests as Code removes any ambiguity from requirements. Testing can then

be performed by executing test code.

Automated test harness facilitates automatic testing of software. Needed since we are testing frequently in

Continuous Integration.

User Acceptance Test customer can develop acceptance tests for requirements in User Stories.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.4.1 User Stories

- 23/46 - © SC2006 Docs Team

4.4.4 Pair Programming

2 developers code together, alternating between roles:

Roles:

Developer writes the code.

Reviewer checks the code for mistakes.

Knowledge Sharing about the codebase will happen when the developers work together. Reduces the risk of

employees leaving and now no one knows how the code works.

•

◦

◦

•

4.4.4 Pair Programming

- 24/46 - © SC2006 Docs Team

4.5 Project Management

Manage Software Engineering project to ensure software delivery happens on time & on budget.

4.6 Scrum

DefineBacklog

BacklogCreation

Plan Product Backlog

BacklogPrioritization

Prioritize Backlog Items

ReleasePlanning

Create Initial Release Plan

SprintCycle

SprintPlanning

Plan Sprint Backlog

DailyStandup

15-min Standup Meeting

IncrementDevelopment

Develop Increment

IncrementTesting

Test Increment

SprintReview

Present Increment to Stakeholders

SprintRetrospective

Reflect and Plan Improvements

Start Sprint

Assign Tasks

Finish Development

Verify Increment

Gather Feedback

Reflect on Improvements

ProjectClosure

Documentation

Finalize Documentation

FinalRelease

Release Final Product

ProjectReview

Conduct Project Retrospective

No More Sprints

4.5 Project Management

- 25/46 - © SC2006 Docs Team

Project Management method for Iterative Software Processes (eg. Agile, XP) with phases:

Initial Phase Requirements, Design System Architecture.

Sprint Cycle Develop & release a incremental software version in 2-4 weeks.

Project Closure Complete documentation, Retrospective.

4.6.1 Scrum Terminology

Term Definition

Development team
A self-organizing group of up to 7 developers responsible for building software and

essential project documents.

Potentially shippable

product increment

A software increment delivered from a sprint, ideally in a finished tested state

requiring no further work for final integration.

Product backlog
A prioritized single source of tasks, features, requirements, or supplementary items

for the Scrum team to address, expressed as User Stories.

Sprint backlog (Sprint

Goal)

A fixed (unchanged for entire sprint) set of Product Backlog Items (PBIs) selected to

worked on the sprint cycle. Unfinished items are returned to the product backlog.

Product owner
A stakeholder responsible for defining and prioritizing features, owns / manages the

Product Backlog, maximising value of product delivered.

Scrum
A daily short 15 minute team meeting to review progress and plan work for the day.

In depth discussion should be done outside of Scrum.

Scrum Master
Ensures the Scrum process is followed, shields the team from distractions by point of

contact for rest of organisation, removes blockers from progress.

Sprint A 2-4 week development iteration focused on delivering specific goals.

Sprint Review

A 1 hr × no. Sprint weeks meeting at the end of a sprint between Product Owner &

External Stakeholders on the state of the project to generate potential changes to

product backlog.

Sprint Retrospective
A 45 min × no. Sprint weeks meeting at the end of a sprint where the Internal

Stakeholders reflect on what went well, what didn’t, and how to improve next time.

4.6.2 Velocity

Velocity is the average workload as User Story Points a development over no. of Sprints:

Sprint Estimate Velocity gives an estimate of workload that may be completed per sprint:

Sprint Planning useful for planning workload allocation of each sprint.

Performance Metric benchmark for Scrum team performance.

4.6.3 Product Backlog

Good Product Backlogs should be:

Detailed not ambiguous.

Emergent up to date with latest requirements.

Estimated product backlog items have workload estimates as story points.

Prioritised items ranked by priority.

1.

2.

3.

VVV pip_ipi nnn

V=∑inpin V = \frac{\sum^{n}_{i} p_i}{n}
V =

n

p∑i
n

i

•

•

•

•

•

•

4.6.1 Scrum Terminology

- 26/46 - © SC2006 Docs Team

5. Software Testing
5.1 Software Bug

A software bug is an error, flaw, failure or fault in a computer program or system that causes it to produce an

incorrect or unexpected result, or to behave in unintended ways.

Bugs are unexpected behaviour in a Software System that deviates from requirements:

Debugging identifying the root cause of the bug.

5.2 Software Testing

Testing: checking software system for known bugs:

User Acceptance reduce risk of failing User Acceptance Test done by Customer.

Software Testing can be used to show the presence of bugs but never to show their absence.

5.2.1 Black Box & White Box Testing

Types of Software Testing:

Black Box testing done without knowledge of code implementation (requirements only).

Equivalence Class Testing

Boundary Value Testing

White Box testing done with knowledge of code implementation (code + requirements).

Control Flow Testing

Testing Test ComplexityTest ThoroughnessTest Coverage

Black Box Lower Lower No

White BoxHigher Higher Yes

5.2.2 Unit, Integration, System, Acceptance Testing

Unit Test Test a single unit of software (eg. function) in isolation.

Integration Test Test interoperability of multiple components

System Test Test functionality of system as a whole.

Acceptance Test Testing done by customer to verify quality of software delivered.

5.2.3 Test Case

Components of a Test Case are derived from verifiable Requirements

ComponentDescription

Name Name of the test case

Path Location of the test case

Input Test input

Oracle Expected test output

Log Actual test output

•

•

•

◦

◦

•

◦

•

•

•

•

5. Software Testing

- 27/46 - © SC2006 Docs Team

5.2.4 Order of Testing

Order of running Test Cases:

Cascading test cases must be run in order as they depend on prior test cases.

Independent test cases can be run in any order.

Order of TestingTest ComplexityParallel Execution

Cascading Lower No

Independent Higher Yes

•

•

5.2.4 Order of Testing

- 28/46 - © SC2006 Docs Team

5.3 Control Flow Testing

White Box Testing method that focuses on testing code paths identified by its Control Flow Graph (CFG) by

choosing inputs that exercise different code paths.

5.3.1 Control Flow Graph (CFG)

Directed Acyclic Graph that represents the Python code:

Process Block contains a group of sequential statements.

Decision Point represented by diamond. Can be binary (2-case) or n-nary (n-case).

def process_data(data):

 total = 0

 print("total = 0")

 for item in data:

 if item % 2 == 0:

 total += item

 else:

 total += 1

 if total == 0:

 print("Empty")

 else:

 print("Present")

 return total

total = 0
Print "total = 0"

item % 2 == 0?
Even Odd

Add item to total Add 1 to total

yes

More items in data?
no

total == 0?
Yes No

Print "Empty" Print "Present"

•

•

5.3 Control Flow Testing

- 29/46 - © SC2006 Docs Team

Common Programming Constructs CFG

If statement:

If/Else Statement:

While/For Loop:

Switch Statement:

yes

yes no

loop

break

5.3.1 Control Flow Graph (CFG)

- 30/46 - © SC2006 Docs Team

5.3.2 Test Coverage

Test Coverage Levels:

Level Coverage Description

Level 1100% statement coverage Every line of code is tested

Level 2100% branch coverage Every decision point branch is taken

Level 3100% basis path coverage Every linearly independent path is tested

Level 4100% path coverage Every path is tested

5.4 Total No. of Paths

Total No. of Paths tested in Level 4: 100% path coverage testing:

 is no. of binary decision points.

 is no. of loop iterations

PPP

• DDD
• LLL

P=2D×L P = 2^D \times L P = 2 ×D L

5.3.2 Test Coverage

- 31/46 - © SC2006 Docs Team

5.5 Basis Path Testing

Control Flow Testing that focuses on Level 3 Test Coverage: Testing all basis paths aka linearly independent

paths in the Control Flow Graph (CFG).

Non Unique Set of basis paths is not unique, depends on initial baseline path chosen.

Build CFG from code of System Under Test.

Compute Cyclometric Complexity (CC) to determine no. of basis paths to test.

Not all basis paths identified by CC are feasible (reachable) in code. Such basis paths are impossible to

test.

Choose a baseline path consisting of false branches choices for each decision point.

Switch branch of 1 decision point to create an alternative path.

Repeat step 4 for all other decision points to obtain basis paths (Baseline + Alternative Paths).

Craft test inputs to test all identified basis paths.

Loops Considerations when dealing with loops:

No Iteration skip the loop cycle entirely.

1 Iteration perform 1 iteration of loop cycle and then exit the loop cycle.

Build CFG from Code of System Under Test

Compute Cyclomatic Complexity (CC)

Choose Baseline Path

Switch 1 Decision Point's Branch to Create Alternative Path

no

more Decision Points?
yes

Repeat for different Decision Point

Test Basis Paths = {Baseline Path + Alternative Paths}

1.

2.

3.

4.

5.

6.

•

•

5.5 Basis Path Testing

- 32/46 - © SC2006 Docs Team

5.6 Cyclometric Complexity (CC)

CC computes the total no. of basis paths in a CFG:

Method A: Edges , Vertices in CFG:

Method B: No. of binary decision points in CFG:

• EEE VVV

CC=∣E∣+∣V∣+2 \text{CC} = |E| + |V| + 2 CC = ∣E∣ + ∣V ∣ + 2

• DDD

CC=D+1 \text{CC} = D + 1 CC = D + 1

5.6 Cyclometric Complexity (CC)

- 33/46 - © SC2006 Docs Team

5.7 Equivalence Class Testing

Black Box testing method that partition possible input domain by expected output equivalence classes.

Test ≥ 1 set of inputs for each equivalence class:

Assumption If the code works for the set of input(s), it should work for all other inputs in the same

equivalence class.

5.7.1 Equivalence Classes

Equivalence Classes are sets of possible inputs with same expected output:

Valid (Testing by Contract) Test successful / happy path for valid inputs eg. Login successful.

Multiple Valid Values test multiple valid input values for each test case.

Exhaustive Optionally, if the valid input domain is small all valid inputs can be tested.

Invalid Test unsuccessful path for invalid inputs eg. Bad login credentials.

Single Invalid Value test only 1 single input value (rest are valid inputs) for each test case to check

code correctly rejects even with only 1 invalid input.

Defensive Testing testing both Valid + Invalid inputs.

Exception error case. eg. Unable to connect to Database.

Numeric Equivalence Classes are Contiguous\ Q: Suppose you have Invalid output for input range

 and .\ What are the Equivalence Classes?

A: 2 Equivalence classes since the input ranges are non overlapping:

Invalid

Invalid

Does not apply to discrete test inputs since they have no notion of "ranges".

5.8 Boundary Value Testing

Black Box Testing Heuristic to select test input values for numeric input range : test around boundary

values & :

Just Above

At Boundary

Just Below

Remove Duplicates Suppose selected test inputs overlaps with the test inputs of another case. Remove the

duplication, since it redundant to verify twice with exactly the inputs.

•

•

◦

◦

•

◦

•

•

−5≤x≤−2-5
\le
x
\le
-2

−5 ≤
x ≤ −2 3≤x≤103

\le
x
\le
10

3 ≤ x ≤ 10

• −5≤x≤−2-5
\le
x
\le
-2

−5 ≤ x ≤ −2
• 3≤x≤103

\le
x
\le
10

3 ≤ x ≤ 10

x∈[a,b]x
\in
[a,b]

x ∈ [a, b]
aaa bbb

• x+ϵ>a,ϵ>0x
+
\epsilon
>
a,
\epsilon
>
0

x + ϵ > a, ϵ > 0
• x=ax

=
a

x = a

• x−ϵ<a,ϵ>0x
-
\epsilon
<
a,
\epsilon
>
0

x − ϵ < a, ϵ > 0

5.7 Equivalence Class Testing

- 34/46 - © SC2006 Docs Team

6. System Design
6.1 Software Architecture

High Level overview of how system components & interactions between them:

Components units of software system eg. frontend, backend

Interactions communication between components eg. API call.

6.1.1 Software Architecture Motivation

Software Architecture / System Design is needed for:

Non Functional Requirements must be implemented in System Design.

Larger Software Lowering complexity in larger software systems by organising components.

Costs & Schedule Correcting bad System Design gets progressively more costly as development

progresses and might delay timely software release.

•

•

•

•

•

6. System Design

- 35/46 - © SC2006 Docs Team

6.2 Software Architecture Diagram

Hierarchical child components (eg. UI) are nested with parent components (eg. Frontend)

Abstract obmits unnecessary details.

Purposeful focused on structure & interactions of components.

6.3 Software Architecture Style

Pattern (well known solution) of organising components in Software Architecture Designk

Frontend

Backend

Database

UI

Login Dashboard API Gateway

Auth Service

User Service

User DB

Handles login Displays data Makes API calls

Auth routes

User data routes

Authentication

Fetch user data

•

•

•

6.2 Software Architecture Diagram

- 36/46 - © SC2006 Docs Team

6.4 Layered Architecture

6.4 Layered Architecture

- 37/46 - © SC2006 Docs Team

Software Architecture Style that groups components into layers

Upper -> Lower Upper layers can call lower layers, but not the other way around.

Pros

Code Reuse for components in lower layers.

Extensibility for components in upper layers.

Cons

Performance overhead.

Hard to Design which layer a component should belong to could be unclear.

•

•

◦

◦

•

◦

◦

6.4 Layered Architecture

- 38/46 - © SC2006 Docs Team

6.5 Object Design

Object design: how to design Objects / Classes in Class Diagram?

Interface Specification defining boundaries between components eg. operations, arguments, properties.

Identifying Reuse leveraging existing libraries & Design Patterns.

Restructuring refactoring done to preserve code maintainability.

Optimisation improve speed or memory performance.

6.6 Design Patterns

Existing solution to a design problem:

Name terminology used to talk about the design pattern.

Problem that design pattern attempts to resolve.

Solution how to implement the design pattern.

Consequences trade offs in implementing the design pattern.

6.6.1 Types of Design Patterns

Design Patterns classified by the problem they solve:

Creation Patterns: how to create objects?

Structural Patterns: how to compose (combine) objects?

Behavioural Patterns: how to implement specific behaviour with objects?

6.7 Strategy Pattern

•

•

•

•

•

•

•

•

•

•

•

PaymentStrategy

pay(amount: double)

CreditCardPayment

pay(amount: double)

PayPalPayment

pay(amount: double)

PaymentContext

strategy: PaymentStrategy

setStrategy(strategy: PaymentStrategy)
executePayment(amount: double)

uses

6.5 Object Design

- 39/46 - © SC2006 Docs Team

Strategy is Behavioural Pattern:

Problem a set of algorithms (eg. CreditCardPayment , PayPalPayment) should be interchangeable (eg.

PaymentStrategy)

Solution implement algorithms behind a common interface.

Consequences

Pros:

Encapsulation hides implementation details.

Extensiblity ie. code dependent on PaymentStrategy does not need to change to add a new

PaymentStrategy implementation.

Hot Swappable Software behaviour change at runtime by swapping classes (eg. CreditCardPayment -

> PayPalPayment).

Cons: Increases complexity.

6.8 Observer Pattern

•

•

•

◦

▪

▪

▪

◦

WeatherStation

observers: List<Observer>

register(o: Observer)
remove(o: Observer)
notify()
setWeatherData(temperature: float, humidity: float)

Observer

update(temperature: float, humidity: float)

MobileDisplay

update(temperature: float, humidity: float)
updateDisplay()

WebDisplay

update(temperature: float, humidity: float)
updateDisplay()

6.8 Observer Pattern

- 40/46 - © SC2006 Docs Team

Strategy is Behavioural Pattern:

Problem Broadcast: Update ≥1 observer objects when a subject object changes without polling.

Solution

Observers (eg. MobileDisplay , WebDisplay) register() themselves with the Subject (WeatherStation)

Subject calls notify() on Observers to notify them of changes.

Observer obtains changes from Subject and does what it needs to do.

Pros

Loose Coupling subject is not dependent on Observer implementations. Observer does not have to poll

Subject constantly for changes.

Cons

Performance overhead.

Complexity increases code complexity.

6.8.1 Change Propagation

How changes are propagated from Subject to Observer:

Pull Approach changes "pulled" by observer via calling methods on the Subject (call back).

2-Way communication (Subject -> Observer, Observer -> Subject) increased coupling.

Selective Changes each Observer can retrieve only the changes it needs by selective calling subject.

Push Approach changes "pushed" by subject via notify(changes) parameter.

1-Way communication (Subject -> Observer) reduced coupling.

All Changes same set of changes are pushed to all observers.

Push + Pull combines both approaches by having subject push minimal changes and the observer pull any

additional changes that it requires.

WeatherStation
(Subject)

WeatherStation
(Subject)

MobileDisplay
(Observer)

MobileDisplay
(Observer)

WebDisplay
(Observer)

WebDisplay
(Observer)

register(self)

register(self)

setWeatherData(temperature, humidity)

notify(temperature, humidity)

notify(temperature, humidity)

•

•

1.

2.

3.

•

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

6.8.1 Change Propagation

- 41/46 - © SC2006 Docs Team

6.9 Factory Pattern

Factory is Creational Pattern

Problem How to encapulate & defer creation of an implementation (eg. Circle , Square) of interface (eg.

Shape)?

Solution App uses Factory (eg. ShapeFactory) to create an implementation (eg. Circle) of the interface (eg.

Shape).

Pros

Encapulation hides creation logic.

Extensiblity in creation logic, adding new implementations to interface.

Shape

draw() : void

Circle

draw() : void

Rectangle

draw() : void

Square

draw() : void

ShapeFactory

createShape(type: String) : Shape

App

«uses»

«uses»

«creates»

•

•

•

◦

◦

6.9 Factory Pattern

- 42/46 - © SC2006 Docs Team

6.10 Facade Pattern

Facade is Structural Pattern

Problem How can reduce dependencies on multiple objects (eg. Amplifier , DVDPlayer , Projector)?

Solution Group interfaces into a single Facade (eg. HomeTheaterFacade) and depend on the Facade instead.

Pros

Ease of Use code has to call 1 Facade instead of juggling multiple objects.

Reduces Dependencies on multiple objects to 1 Facade.

Decoupling code from multiple objects.

Cons

Extra Work to replicate functionality behind Facade.

Complexity due to indirection.

Performance overhead.

HomeTheaterFacade

watchMovie(movie: String) : void
endMovie() : void

Amplifier

on() : void
setVolume(level: int) : void
off() : void

DVDPlayer

on() : void
play(movie: String) : void
stop() : void
off() : void

Projector

on() : void
setInput(source: String) : void
off() : void

Client

main() : void

«uses»

«controls» «controls» «controls»

•

•

•

◦

◦

◦

•

◦

◦

◦

6.10 Facade Pattern

- 43/46 - © SC2006 Docs Team

6.11 Model View Controller (MVC)

Software Architecture Style for user facing interactive systems that separates:

Data (Model) data structure & logic to manipulate data.

Presentation (View & Controller)

View presents data to the user.

Controller handles user actions.

MVC ≠ Boundary-Control-Entity

Model = Control + Entity

View + Controller = Boundary

Not Layered Architecture Cyclic Dependency between Model, View, Controller makes it impossible to

separate into clear layers required in layered architecture.

6.11.1 MVC Design Patterns

Design Patterns used in MVC:

Strategy Pattern

View eg. Light Mode & Dark Mode presentation strategies.

Controller eg. Anonymous vs logged-in User functionality.

Observer Pattern

View observes changes on the Model, which then notifies View to reflect changes.

6.11.2 MVC Tradeoffs

Pros

Loose Coupling via indirection (ie. View makes changes to Model via Controller).

Simultaneous Development of Model, View, Controller independently.

High Cohesion related components are grouped together (eg. all Models are grouped).

View

update(model: Model) : void
render() : void

Controller

handleInput(action: String, params: Map<String, Object>) : void

Model

data : Map<String, Object>

getData() : Map<String, Object>
setData(key: String, value: Object) : void
addObserver(observer: View) : void
notifyObservers() : void

DarkModeView

renderDarkTheme() : void

LightModeView

renderLightTheme() : void

UserController

handleAuthAction(userId: String, action: String) : void

AnonymousController

handleAnonymousAction(action: String) : void

«notifies»

«modifies»

«handle input»

•

•

◦

◦

•

•

•

◦

◦

•

◦

•

•

•

6.11 Model View Controller (MVC)

- 44/46 - © SC2006 Docs Team

Cons

Incompability Model, View, Controller no longer interoperate together.

Complexity due to additional indirection.

•

•

6.11.2 MVC Tradeoffs

- 45/46 - © SC2006 Docs Team

7. Software Maintenance
Software Maintenance is

The process of modifying a software system after delivery to correct faults, improve performance or other

attributes, or adapt to a changed environment.

7.1 Software Maintenance Problems

Unstructured Code spaghetti code, bad naming, deep code block nesting etc.

Insufficient Knowledge about the codebase, problem domain.

Insufficient Documentation missing, out of date, insufficient documentation.

7.2 Software Mantainance Activities

Fault Repairs (24%) fixing bugs, vulnerabilities.

Environmental Adaptation (19%) changing software runtime environment eg. Windows Software to run on

Linux OS.

Functionality Addition / Modification (58%) modifying system to satisfy new requirements.

8. Software Refactoring
Making improvements to codebase without changing functionality to improve structure, reduce complexity

and ease of code understanding.

8.1 Code Smells

Refactoring removes Code Smells:

duplicate code: need to correct in multiple places if bugged.

long methods / functions / classes: increased complexity of code.

temporary variables: with meaningless names eg. a , b .

switch statement: missing default case, missing break .

lazy class: runtime initialisation

data redundnancy / duplication

tight coupling

•

•

•

•

•

•

•

•

•

•

•

•

•

7. Software Maintenance

- 46/46 - © SC2006 Docs Team

	NTU SC2006 Notes
	1. Software Engineering
	2. Software Development Activities
	3. Requirements
	3.1 Requirements Elicitation
	3.2 Requirements Elicitation Process
	3.3 Software Requirements Specification (SRS)
	3.3.1 Project Mission Statement
	3.3.2 Types of Requirements
	3.3.3 Good Requirements
	3.3.4 UI Prototype
	3.3.5 Data Dictionary

	3.4 Unified Modelling Language (UML)
	3.5 Use Case Model
	3.5.1 Use Case
	3.5.2 Use Case Diagram
	Use Case Diagram Associations

	3.5.3 Use Case Description

	3.6 Requirements Analysis
	3.6.1 Conceptual Model
	3.6.2 Dynamic Model

	3.7 Class Diagram
	3.7.1 Access Modifiers

	3.8 Class Stereotype Diagram
	3.9 Sequence Diagram
	3.10 Communication Diagram
	3.11 State Machine Diagram
	3.11.1 State
	3.11.2 Event

	3.12 Activity Diagram

	4. Software Processes
	4.1 Software Processes
	4.1.1 Plan Drive vs Agile vs Incremental
	Plan Driven
	Agile

	4.2 Software Process Models
	4.2.1 Waterfall
	4.2.2 Incremental
	4.2.3 Integration & Configuration
	Reuse Oriented-Software Development

	4.3 Agile
	4.3.1 Agile Manifesto
	4.3.2 Agile Principles

	4.4 Extreme Programming (XP)
	4.4.1 User Stories
	Acceptance Criteria
	Release Planning
	User Story Tasks

	4.4.2 Refactoring
	4.4.3 Test Driven Development (TDD)
	4.4.4 Pair Programming

	4.5 Project Management
	4.6 Scrum
	4.6.1 Scrum Terminology
	4.6.2 Velocity
	4.6.3 Product Backlog

	5. Software Testing
	5.1 Software Bug
	5.2 Software Testing
	5.2.1 Black Box & White Box Testing
	5.2.2 Unit, Integration, System, Acceptance Testing
	5.2.3 Test Case
	5.2.4 Order of Testing

	5.3 Control Flow Testing
	5.3.1 Control Flow Graph (CFG)
	Common Programming Constructs CFG

	5.3.2 Test Coverage

	5.4 Total No. of Paths
	5.5 Basis Path Testing
	5.6 Cyclometric Complexity (CC)
	5.7 Equivalence Class Testing
	5.7.1 Equivalence Classes

	5.8 Boundary Value Testing

	6. System Design
	6.1 Software Architecture
	6.1.1 Software Architecture Motivation

	6.2 Software Architecture Diagram
	6.3 Software Architecture Style
	6.4 Layered Architecture
	6.5 Object Design
	6.6 Design Patterns
	6.6.1 Types of Design Patterns

	6.7 Strategy Pattern
	6.8 Observer Pattern
	6.8.1 Change Propagation

	6.9 Factory Pattern
	6.10 Facade Pattern
	6.11 Model View Controller (MVC)
	6.11.1 MVC Design Patterns
	6.11.2 MVC Tradeoffs

	7. Software Maintenance
	7.1 Software Maintenance Problems
	7.2 Software Mantainance Activities

	8. Software Refactoring
	8.1 Code Smells

